Informatique/SPE/OPT/TP 2/main.ml
2020-09-12 18:39:51 +02:00

67 lines
1.7 KiB
OCaml

type formule =
| Var of int
| Not of formule
| Imply of formule*formule
| Equiv of formule*formule
| And of formule list
| Or of formule list;;
let f = And [Or [Var 0; Var 1; Var 2]; Not (Var 0)];;
let g = Equiv (Var 0, And [Var 1; Var 2]);;
let rec evaluer_tab t form = match form with
| Var i -> t.(i)
| Not f -> not (evaluer_tab t f)
| Imply (f1,f2) -> (not (evaluer_tab t f1)) || (evaluer_tab t f2)
| Equiv (f1,f2) -> (evaluer_tab t f1) = (evaluer_tab t f2)
| And [] -> true
| And (h::tail) -> (evaluer_tab t h) && (evaluer_tab t (And tail))
| Or [] -> false
| Or (h::tail) -> (evaluer_tab t h) || (evaluer_tab t (Or tail));;
5 lsr 1;;
let contexte_from_int n c =
let contexte = Array.make n false in
let j = ref c in
for i = 0 to n-1 do
contexte.(i) <- !j mod 2 <> 0;
j := !j lsr 1
done;
contexte;;
let evaluer n c f =
let contexte = contexte_from_int n c in
evaluer_tab contexte f;;
evaluer 3 3 g;;
let table_de_verite n f =
let rec puis n a = match n with
| 0 -> 1
| _ -> a * (puis (n-1) a) in
let res = Array.make (puis n 2) false in
for c=0 to ((Array.length res) -1) do
res.(c) <- evaluer n c f
done;
res;;
table_de_verite 3 g;;
let forme_normale_disjonctive n f =
let rec puis n a = match n with
| 0 -> 1
| _ -> a * (puis (n-1) a) in
let rec disjonction c conjs =
let rec conjonction cont conj n = match n with
| -1 -> And conj
| _ -> conjonction cont ((if cont.(n) then (Var n) else Not (Var n))::conj) (n-1) in
match c with
| -1 -> Or conjs
| _ -> let contexte = context_from_int n c in
if evaluer_tab contexte f then
disjonction (c-1) ((conjonction contexte [] (n-1))::conjs)
else
disjonction (c-1) conjs in
disjonction ((puis n 2) -1) [];;
forme_normale_disjonctive 3 g;;