Informatique/SPE/IPT/TD1 Exos programmation/exo1.py

80 lines
2.0 KiB
Python
Executable File

#!/usr/bin/env python3
import random
import numpy as np
import matplotlib.pyplot as plt
class Question:
def __init__(self,i=1, l=0, n=''):
self.name=n
self.level=l
self.number=i
def __enter__(self):
print('\n' + (self.level*2)*' ' + f"-> {self.number}. : {self.name} -- Début")
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
print((self.level*2)*' ' + f"<- {self.number}. : {self.name} -- Fin\n")
with Question(1):
def tirer(n):
item = 0
for _ in range(n):
if random.random()<.5:
item +=1
return item
def proportion(n , N, k):
s = 0
for i in range(N):
if tirer(n) == k:
s += 1
return s/N
print('proportion(10, 100, 1) :', proportion(10, 100, 5))
n = 10
N = 100
plt.figure(0)
x = np.asarray(range(n+1))
y = np.asarray([proportion(n, N, k) for k in x])
plt.plot(x, y)
def binom(k, n):
return np.math.factorial(n)/(np.math.factorial(k)*np.math.factorial(n-k))
plt.figure(1)
x = np.asarray(range(n+1))
y = np.asarray([binom(k, n) for k in x])
plt.plot(x, y)
#Version avec une proportion p :
def tirer2(n, p):
item = 0
for _ in range(n):
if random.random()<p:
item +=1
return item
def proportion2(n, p, N, k):
s = 0
for i in range(N):
if tirer2(n, p) == k:
s += 1
return s/N
p = .3
print('proportion2(10, p, 100, 1) :', proportion2(10, p, 100, 5))
n = 10
N = 100
plt.figure(2)
x = np.asarray(range(n+1))
y = np.asarray([proportion2(n, p, N, k) for k in x])
plt.plot(x, y)
def prop(k, n, p):
return binom(k, n) * (p**k) * (1-p)**(n-k)
plt.figure(3)
x = np.asarray(range(n+1))
y = np.asarray([prop(k, n, p) for k in x])
plt.plot(x, y)
plt.show()