[TP0] Méthodes numériques
This commit is contained in:
parent
ed8a5bed4f
commit
49d542c19d
107
SPE/IPT/TP0 METHODES NUMERIQUES/main.py
Normal file
107
SPE/IPT/TP0 METHODES NUMERIQUES/main.py
Normal file
@ -0,0 +1,107 @@
|
|||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class Question:
|
||||||
|
def __init__(self,i=1, l=0, n=''):
|
||||||
|
self.name=n
|
||||||
|
self.level=l
|
||||||
|
self.number=i
|
||||||
|
def __enter__(self):
|
||||||
|
print('\n' + (self.level*2)*' ' + f"-> {self.number}. : {self.name} -- Début")
|
||||||
|
return self
|
||||||
|
def __exit__(self, exc_type, exc_value, exc_traceback):
|
||||||
|
print((self.level*2)*' ' + f"<- {self.number}. : {self.name} -- Fin\n")
|
||||||
|
|
||||||
|
|
||||||
|
with Question(1):
|
||||||
|
with Question(1,1):
|
||||||
|
def dichotomie(f, n, a=0, b=2):
|
||||||
|
iterations = 0
|
||||||
|
while abs(b-a) >= 2*10**(-n):
|
||||||
|
iterations += 1
|
||||||
|
c = (a+b) / 2
|
||||||
|
if f(c) == 0:
|
||||||
|
return c
|
||||||
|
elif f(a)*f(c) > 0:
|
||||||
|
a = c
|
||||||
|
else:
|
||||||
|
b = c
|
||||||
|
return c, iterations
|
||||||
|
f = lambda x: x**3 - 3*x**2 + 1
|
||||||
|
print(dichotomie(f,5,0,1.5))
|
||||||
|
print(dichotomie(np.sin, 3, 3, 4))
|
||||||
|
print(dichotomie(np.sin, 10, 3, 4))
|
||||||
|
|
||||||
|
|
||||||
|
with Question(2,1):
|
||||||
|
def newton(f, fp, x0, nbiter, epsilon=1e-10):
|
||||||
|
for i in range(nbiter):
|
||||||
|
x1 = x0 - f(x0) / fp(x0)
|
||||||
|
if abs(x1 - x0) <= epsilon:
|
||||||
|
break
|
||||||
|
x0 = x1
|
||||||
|
return x1
|
||||||
|
print(newton(lambda x: x**3 - 3*x**2 + 1, lambda x: 3*x**2 - 6*x, 1.5, 200, epsilon=1e-100))
|
||||||
|
print(newton(np.sin, np.cos, 3, 100))
|
||||||
|
print(abs(newton(np.sin, np.cos, 3, 100) - dichotomie(np.sin, 10, 3, 4)[0]))
|
||||||
|
|
||||||
|
|
||||||
|
with Question(2):
|
||||||
|
from math import cos, exp, sin, log
|
||||||
|
from scipy.integrate import quad
|
||||||
|
from time import time
|
||||||
|
with Question(1,2):
|
||||||
|
def rectangles(f, a, b, n):
|
||||||
|
res = 0
|
||||||
|
for k in range(n):
|
||||||
|
res += f(a + k*(b - a)/n)
|
||||||
|
return res*(b - a)/n
|
||||||
|
def f1(x):
|
||||||
|
return x
|
||||||
|
def f2(x):
|
||||||
|
return x**10
|
||||||
|
f3 = cos
|
||||||
|
f4 = exp
|
||||||
|
print(rectangles(f1, 0, 1, 1000), quad(f1, 0, 1)[0])
|
||||||
|
print(rectangles(f2, 0, 1, 1000), quad(f2, 0, 1)[0])
|
||||||
|
print(rectangles(f3, 0, np.pi/2, 1000), quad(f3, 0, np.pi/2)[0])
|
||||||
|
print(rectangles(f4, -3, 3, 1000), quad(f4, -3, 3)[0])
|
||||||
|
|
||||||
|
|
||||||
|
with Question(2,2):
|
||||||
|
def trapezes(f, a, b, n):
|
||||||
|
res = 0
|
||||||
|
for k in range(n):
|
||||||
|
res += f(a + k*(b - a)/n) + f(a + (k+1)*(b - a)/n)
|
||||||
|
return res*(b - a)/(2*n)
|
||||||
|
print(trapezes(f1, 0, 1, 1000), quad(f1, 0, 1)[0])
|
||||||
|
print(trapezes(f2, 0, 1, 1000), quad(f2, 0, 1)[0])
|
||||||
|
print(trapezes(f3, 0, np.pi/2, 1000), quad(f3, 0, np.pi/2)[0])
|
||||||
|
print(trapezes(f4, -3, 3, 1000), quad(f4, -3, 3)[0])
|
||||||
|
|
||||||
|
|
||||||
|
with Question(3, 2):
|
||||||
|
def simpson(f, a, b, n):
|
||||||
|
res = 0
|
||||||
|
for k in range(n):
|
||||||
|
res += f(a + k*(b - a)/n) + 4*f(((a+k*(b - a)/n) + (a + (k+1)*(b - a)/n))/2) + f(a + (k+1)*(b - a)/n)
|
||||||
|
return res*(b - a)/(6*n)
|
||||||
|
print(simpson(f1, 0, 1, 1000), quad(f1, 0, 1)[0])
|
||||||
|
print(simpson(f2, 0, 1, 1000), quad(f2, 0, 1)[0])
|
||||||
|
print(simpson(f3, 0, np.pi/2, 1000), quad(f3, 0, np.pi/2)[0])
|
||||||
|
print(simpson(f4, -3, 3, 1000), quad(f4, -3, 3)[0])
|
||||||
|
|
||||||
|
|
||||||
|
with Question(3):
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
with Question(1, 2):
|
||||||
|
def euler(F, t0, y0, t1, n):
|
||||||
|
res = [y0]*(n+1)
|
||||||
|
for i in range(1,n+1):
|
||||||
|
res[i] = res[i-1] + (t1-t0)/n * F(t0 + i*(t1-t0)/n, res[i-1])
|
||||||
|
return res
|
||||||
|
def expo_euler(t, yt):
|
||||||
|
return yt
|
||||||
|
n = 100
|
||||||
|
plt.plot(np.linspace(0, 1, num=n+1), euler(expo_euler, 0, 1, 1, n))
|
||||||
|
plt.plot(np.linspace(0, 1, num=n+1), np.exp(np.linspace(0, 1, num=n+1)))
|
||||||
|
plt.show()
|
Loading…
Reference in New Issue
Block a user