Option info + IPT

This commit is contained in:
Suwako Moriya 2020-09-11 18:31:23 +02:00
parent 49d542c19d
commit 3767f69745
6 changed files with 349 additions and 90 deletions

View File

@ -11,7 +11,7 @@ class Question:
def __exit__(self, exc_type, exc_value, exc_traceback):
print((self.level*2)*' ' + f"<- {self.number}. : {self.name} -- Fin\n")
if False:
with Question(1):
with Question(1,1):
def dichotomie(f, n, a=0, b=2):
@ -101,7 +101,97 @@ with Question(3):
return res
def expo_euler(t, yt):
return yt
n = 100
plt.plot(np.linspace(0, 1, num=n+1), euler(expo_euler, 0, 1, 1, n))
plt.plot(np.linspace(0, 1, num=n+1), np.exp(np.linspace(0, 1, num=n+1)))
ne = 100
n = 10
plt.plot(np.linspace(0, 1, num=n+1), euler(expo_euler, 0, 1, 1, n), 'bo')
plt.plot(np.linspace(0, 1, num=ne+1), np.exp(np.linspace(0, 1, num=ne+1)), 'r')
plt.show()
print("--- Calcul Matriciel ---\n\n")
with Question(1):
with Question(2, 2):
with Question(1,3):
def matrice_nulle(n, m):
return [[0 for _ in range(m)] for _ in range(n)]
with Question(2,3):
def dimension(A):
if len(A):
return len(A),len(A[0])
else:
return 0
with Question(3,3):
def addition(A, B):
n,m = dimension(A)
return [[A[i][j] + B[i][j] for j in range(m)] for i in range(n)]
A3=[[1,2,3],
[0,1,0],
[-1,2,-6]]
B3=[[-1,5,0],
[1,0,-2],
[1,2,3]]
print(addition(A3, B3), '\n', np.array(A3)+np.array(B3))
print("Le résultat pour cette exemple est le même.")
with Question(4,3):
def transposee(A):
n,m = dimension(A)
return [[A[j][i]for j in range(n)] for i in range(m)]
print(transposee([[1,2,3],
[4,5,6]]))
print(list(map(list,zip(*[[1,2,3],[4,5,6]])))) # Parce que c'est amusant de chercher à faire une version courte.
with Question(5,3):
def multiple(A, coef):
n,m = dimension(A)
return [[coef * A[i][j] for j in range(m)] for i in range(n)]
print(multiple([[1,2],
[3,4]], 2))
with Question(6,3):
def multiplication(A, B):
n,p = dimension(A)
_,m = dimension(B)
return [[sum(A[i][k] * B[k][j] for k in range(p))for j in range(m)] for i in range(n)]
A6 = [[1,2,3],
[4,5,6]]
B6 = [[3,6],
[2,5],
[1,4]]
print(multiplication(A6,B6))
with Question(7,3):
def puissance(A, n):
_,m = dimension(A)
res = [[1 if j==i else 0 for j in range(m)] for i in range(m)]
for _ in range(0, n):
print(n)
res = multiplication(res, A)
return res
print(puissance([[0,1],
[0,0]], 2))
with Question(3, 2):
with Question(2,3):
with Question(1,4):
def echange_ligne(A, i, j):
A[i], A[j] = A[j], A[i]
A1 = [[1,2,3],
[4,5,6]]
echange_ligne(A1, 0, 1)
print(A1)
with Question(2,4):
def transvection(A, i, j, mu):
A[i] = addition([A[i]], multiple([A[j]], mu))[0]
transvection(A1, 0, 1, -1)
print(A1)
with Question(3, 4):
def pivot_partiel(A, j0):
n, m = dimension(A)
if n<j0 or m<j0:
raise IndexError("j0 trop grand")
maxi = A[j0][j0]
for i in range(j0, n):
maxi = max(A[i][j0], maxi)
return maxi
print(pivot_partiel([[1,2,3],
[4,5,6],
[7,3,9]], 1))
with Question(4,4):
def devient_triangle(A):
pass

28
SPE/OPT/Logique.ml Normal file
View File

@ -0,0 +1,28 @@
type variables = char;;
type formule =
| Var of variables
| Non of formule
| Implique of formule*formule
| Equivaut of formule*formule
| Et of formule list
| Ou of formule list;;
let f = Implique (Et [Var 'p';Non (Var 'q')], Ou [Var 'p';Non (Var 'r')]);;
let exemple_de_contexte v = match v with
|'p' -> true
|'q' -> false
|'r' -> false
|_ -> true;;
let rec interpretation contexte formule = match formule with
| Var v-> contexte v
| Non f -> not (interpretation contexte f)
| Implique (a,b) -> not (interpretation contexte a) || (interpretation contexte b)
| Equivaut (a,b) -> not (interpretation contexte a) = (interpretation contexte b)
| Et [] -> true
| Et (h::t) -> (interpretation contexte h) && (interpretation contexte (Et t))
| Ou [] -> false
| Ou (h::t) -> (interpretation contexte h) || (interpretation contexte (Ou t));;
interpretation (exemple_de_contexte) (Et [Var 'q'; Non (Var 'r')]);;

12
SPE/OPT/TD 1/main.ml Normal file
View File

@ -0,0 +1,12 @@
(*1 *)
let rec est_un_systeme c = match c with
| [] -> false
| [h] -> h=1
| h1::h2::t -> h1 > h2 && est_un_systeme (h2::t);;
est_un_systeme [3;4;3];;
(*2*)
(* Mq $x \geq M(x)$ par l'absurde
Supposons qu'on a M(x) > x
alors il existe $k \in \mathbb{N}^m$ tel que

41
SPE/OPT/TD 1/main.tex Normal file
View File

@ -0,0 +1,41 @@
\documentclass[a4paper,10pt]{article}
%\documentclass[a4paper,10pt]{scrartcl}
\usepackage[utf8]{inputenc}
\usepackage{mathtools}
\usepackage{amssymb}
\usepackage{amsmath}
\title{TD Option Info}
\author{}
\date{}
\pdfinfo{%
/Title (TD option info)
/Author ()
/Creator ()
/Producer ()
/Subject ()
/Keywords ()
}
\begin{document}
\maketitle
\section{Systèmes de pièces}
\subsection{}
\section{}
Montrons qu'on a $ x \geq M(x) $\\
$M(x)$ est défini, alors il existe $k \in \mathbb{N}^m$ tel que $x = \sum_{i=1}^m k_i c_i$ avec $\sum_{i=1}^m k_i = M(x)$\\
On sait que $\forall\text{ } 1\leq i\leq m, c_i >= 1$
Donc $x = \sum_{i=0}^m k_i c_i \geq \sum_{i=0}^m k_i = M(x)$\\\\
Montrons qu'on a $\lceil\frac{x}{c_1} \rceil \leq M(x)$\\
Par définition $\lceil\frac{x}{c_1} \rceil \leq \frac{x}{c_1} + 1$\\
Montrons qu'on a $\frac{x}{c_1} + 1 \leq M(x)$\\
$M(x)$ est défini, alors il existe $k \in \mathbb{N}^m$ tel que $x = \sum_{i=1}^m k_i c_i$ avec $\sum_{i=1}^m k_i = M(x)$\\
Ainsi, $\frac{x}{c_1} + 1 = \left( \sum_{i=1}^m \frac{k_i c_i}{c_1}\right) + 1 = \left( \sum_{i=2}^m \frac{k_i c_i}{c_1}\right) + k_1 + 1 $\\
or on a $c_1 > c_2 > ... > c_m$ donc
$\left( \sum_{i=2}^m \frac{k_i c_i}{c_1}\right) + k_1 + 1 \leq \left( \sum_{i=2}^m k_i\right) + k_1 + 1 = M(x) + 1 $\\
CQFD.
\subsection{}
\end{document}

46
SPE/OPT/TP 1/main.ml Normal file
View File

@ -0,0 +1,46 @@
(*Q1*)
let h_exemple s = (Char.code (Char.uppercase_ascii s.[0])) - 65;;
h_exemple "z";;
type ('a, 'b) dict = {
hache: 'a -> int;
table_hachage: ('a *'b) list array;
largeur: int};;
(*Q2*)
let creer_dict_vide n hache = {
hache=hache;
table_hachage=(Array.make n []);
largeur=n};;
let d_exemple = creer_dict_vide 25 h_exemple;;
(*Q3*)
let contient cle d =
let h = d.hache cle in
List.mem cle (List.map fst d.table_hachage.(h));;
contient "blablab" d_exemple;;
let inserer cle enregistrement d =
if contient cle d then failwith "Déjà dans le dictionnaire" else ();
let h = d.hache cle in
d.table_hachage.(h) <- ((cle, enregistrement)::d.table_hachage.(h));;
let valeur cle d =
let rec aux acc = match acc with
|[] -> raise Not_found
|(c, enregistrement)::t -> if c=cle then enregistrement else aux t in
aux d.table_hachage.(d.hache cle);;
let supprimer cle d =
let h = d.hache cle in
let rec aux acc li = match li with
| [] -> raise Not_found
| (c, e)::t -> if c=cle then acc@t else aux ((c,e)::acc) t in
d.table_hachage.(h) <- aux [] d.table_hachage.(h);;
let modifier cle enregistrement d =
supprimer cle d;
inserer cle enregistrement d;;
inserer "rire" "voilà" d_exemple;;
valeur "mais" d_exemple;;
supprimer "rigolo" d_exemple;;
modifier "blablab" "truc" d_exemple;;
d_exemple;;

42
SPE/OPT/TP 2/main.ml Normal file
View File

@ -0,0 +1,42 @@
type formule =
| Var of int
| Not of formule
| Imply of formule*formule
| Equiv of formule*formule
| And of formule list
| Or of formule list;;
let f = And [Or [Var 0; Var 1; Var 2]; Not (Var 0)];;
let g = Equiv (Var 0, And [Var 1; Var 2]);;
let rec evaluer_tab t form = match form with
| Var i -> t.(i)
| Not f -> not (evaluer_tab t f)
| Imply (f1,f2) -> (not (evaluer_tab t f1)) || (evaluer_tab t f2)
| Equiv (f1,f2) -> (evaluer_tab t f1) = (evaluer_tab t f2)
| And [] -> true
| And (h::tail) -> (evaluer_tab t h) && (evaluer_tab t (And tail))
| Or [] -> false
| Or (h::tail) -> (evaluer_tab t h) || (evaluer_tab t (Or tail));;
5 lsr 1;;
let evaluer n c f =
let contexte = Array.make n false in
let j = ref c in
for i = 0 to n-1 do
contexte.(i) <- !j mod 2 = 0;
j := !j lsr 1
done;
evaluer_tab contexte f;;
evaluer 3 0 f;;
let table_de_verite n f =
let rec puis n a = match n with
| 0 -> 1
| _ -> a * (puis (n-1) a) in
let res = Array.make (puis n 2) false in
for c=0 to ((Array.length res) -1) do
res.(c) <- evaluer n c f
done;
res;;
table_de_verite 3 g;;