2020-01-10 13:06:43 +01:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
|
|
Created on Fri Jan 10 09:17:36 2020
|
|
|
|
|
|
|
|
@author: suwako
|
|
|
|
"""
|
|
|
|
|
|
|
|
import scipy
|
|
|
|
import numpy as np
|
|
|
|
def dichotomie(f, a, b, epsilon=1e-15):
|
|
|
|
g, d = a, b
|
|
|
|
while abs(g - d) > 2*epsilon:
|
|
|
|
m = (g+d)/2.
|
|
|
|
if f(g)*f(m) <= 0:
|
|
|
|
d = m
|
|
|
|
else:
|
|
|
|
g = m
|
|
|
|
return (g+d)/m
|
2020-01-24 11:26:40 +01:00
|
|
|
|
|
|
|
def newton(f, fp, x0, nbiter):
|
|
|
|
u1 = x0
|
|
|
|
u2 = u1 - f(u1)/fp(u1)
|
|
|
|
epsilon = 1e-8
|
|
|
|
for i in range(nbiter):
|
|
|
|
if abs(u1 - u2) < epsilon :
|
|
|
|
return (u2, f(u2), nbiter, u1 - u2)
|
|
|
|
u1, u2 = u2, u2 - f(u2)/fp(u2)
|
|
|
|
raise
|