92 lines
2.1 KiB
OCaml
92 lines
2.1 KiB
OCaml
|
(* Exercice 1 *)
|
|||
|
let rec fibo n = match n with
|
|||
|
|0 -> 0
|
|||
|
|1 -> 1
|
|||
|
|_ -> (fibo (n-1)) + (fibo (n-2));;
|
|||
|
let fibot n =
|
|||
|
let rec aux acc1 acc2 n = match n with
|
|||
|
| 0 -> acc1
|
|||
|
| _ -> aux acc2 (acc2+acc1) (n-1) in
|
|||
|
aux 0 1 n;;
|
|||
|
|
|||
|
let comp fa fb i j =
|
|||
|
let debuta =Sys.time () in
|
|||
|
fa i j;
|
|||
|
let fina = Sys.time () in
|
|||
|
let debutb = Sys.time () in
|
|||
|
fb i j;
|
|||
|
let finb = Sys.time() in
|
|||
|
print_float (fina -. debuta);
|
|||
|
print_newline ();
|
|||
|
print_float (finb -. debutb);;
|
|||
|
fibo 20;;
|
|||
|
Sys.time ();;
|
|||
|
comp fibot fibot 50000000;;
|
|||
|
|
|||
|
(* Exercice 2 *)
|
|||
|
|
|||
|
let rec numero x y = match y with
|
|||
|
|0 when x = 0 -> 0
|
|||
|
|0 -> numero 0 (x-1) + 1
|
|||
|
|_ -> numero (x+1) (y-1) + 1;;
|
|||
|
let numero_ter x y =
|
|||
|
let rec aux acc x y = match y with
|
|||
|
|0 when x = 0 -> acc
|
|||
|
|0 -> aux (acc+1) 0 (x-1)
|
|||
|
|_ -> aux (acc+1) (x+1) (y-1) in
|
|||
|
aux 0 x y;;
|
|||
|
numero_ter 2 2;;
|
|||
|
let rec suite x y = match x with
|
|||
|
|0 -> [numero_ter 0 y]
|
|||
|
|_ -> (numero_ter x y)::(suite (x-1) y);;
|
|||
|
suite 100 0;;
|
|||
|
let numero_formule x y = (x+y)*(x+y+1)/2 + y ;;
|
|||
|
numero 6 2;;
|
|||
|
|
|||
|
(* Exercice 3 *)
|
|||
|
|
|||
|
let binome k n =
|
|||
|
let m = Array.make_matrix (n+1) (k+1) 0 in
|
|||
|
for i = 0 to n do
|
|||
|
for j = 0 to k do
|
|||
|
if j = 0 then m.(i).(j) <- 1
|
|||
|
else if i = 0 then m.(i).(j) <- 0
|
|||
|
else m.(i).(j) <- m.(i-1).(j) + m.(i-1).(j-1)
|
|||
|
done
|
|||
|
done;
|
|||
|
m.(n).(k);;
|
|||
|
let rec binrec k n = match (k,n) with
|
|||
|
| (0,n) -> 1
|
|||
|
| (k,0) -> 0
|
|||
|
| _ -> binrec (k-1) (n-1) + binrec k (n-1);;
|
|||
|
binrec 2 7;;
|
|||
|
binome 2 7;;
|
|||
|
|
|||
|
comp binrec binome 12 22;;
|
|||
|
(* La version it<69>rative est plus rapide. *)
|
|||
|
(* En effet, la version it<69>rative ne calcule qu'une seule fois chacun
|
|||
|
des coefficients l<EFBFBD> o<EFBFBD> la version r<EFBFBD>cursive calcule <EFBFBD> plusieures reprises
|
|||
|
les m<EFBFBD>mes coefficients *)
|
|||
|
|
|||
|
(* Exo Bonus *)
|
|||
|
|
|||
|
let rec binr n = match n with
|
|||
|
| 0 -> [""]
|
|||
|
| _ -> List.map (fun s -> "1"^s) (binr (n-1)) @ List.map (fun s -> "0"^s) (binr (n-1));;
|
|||
|
binr 5;;
|
|||
|
|
|||
|
let binit n =
|
|||
|
let rec puis x n = match n with
|
|||
|
| 0 -> 1
|
|||
|
| _ -> x * (puis x (n-1)) in
|
|||
|
let aux = fun x -> match x with | true -> 0 | false -> 1 in
|
|||
|
let res = Array.make (puis 2 n) "" in
|
|||
|
for i = 0 to (puis 2 n) - 1 do
|
|||
|
let cur = ref "" in
|
|||
|
for j = n downto 1 do
|
|||
|
cur:= !cur ^ string_of_int (aux ( (i / (j)) mod 2 = 0))
|
|||
|
done;
|
|||
|
res.(i) <- !cur
|
|||
|
done;
|
|||
|
res;;
|
|||
|
binit 3;;
|