This commit is contained in:
Fomys 2019-02-25 21:22:08 +01:00
parent 8dd47da162
commit 75c3fe231e
8 changed files with 22 additions and 335 deletions

2
.gitignore vendored
View File

@ -1,2 +1,4 @@
.idea/
Pipfile.lock
__pycache__/
build/

View File

@ -5,6 +5,7 @@ name = "pypi"
[packages]
pillow = "*"
sphinx = "*"
[dev-packages]

View File

@ -4,4 +4,22 @@ Défi de la semaine, fractale
# Dépendances
- Pillow, `pip install pillow`
- Pillow, `pip install pillow`
# Installation
mkdir python
cd python
wget https://www.python.org/ftp/python/3.6.8/Python-3.6.8.tgz
tar -xf Python-3.6.8.tgz
cd Python-3.6.8
./configure --enable-optimizations
make
make altinstall
pip3.6 install pipenv
cd ..
git clone https://moriya.zapto.org/LCI/fractale.git
cd fractale
pipenv install
cd sources
pipenv run betterTurtle.py

View File

@ -1,317 +0,0 @@
# -*- coding: utf-8 -*-
"""
A new turtle which is faster.
>>> t = Turtle()
>>> t.init()
>>> t.set_position((0, 0))
>>> t.fractal.outline(6, 2, 5)
.. autoclass:: Figures
:members:
:undoc-members:
.. autoclass:: Turtle
:members:
:undoc-members:
"""
import math
import time
from PIL import Image, ImageDraw
class Figures:
"""A lot of function to create some well-know shapes
:param master: turtle2 to use for draw
:type master: Turtle
:returns: Nothing
:rtype: None"""
def __init__(self, master):
self.canvas = master
def _outline_trace(self, number_of_iterations, length, number_of_sides):
"""Internal function to draw outline of a recursive shape
:param number_of_iterations: Number of iteration used to draw
:param length: Size of a single side
:param number_of_sides: Number of sides of the initial shape
:type number_of_iterations: int
:type length: int
:type number_of_sides: int
:returns: Nothing
:rtype: None"""
# Stop the recursion if the number of iteration is equal to zero
if number_of_iterations == 0:
self.canvas.forward(length)
else:
self._outline_trace(number_of_iterations - 1, length, number_of_sides)
self.canvas.right(360. / number_of_sides)
self._outline_trace(number_of_iterations - 1, length, number_of_sides)
self.canvas.right(-360. / number_of_sides)
self._outline_trace(number_of_iterations - 1, length, number_of_sides)
self.canvas.right(-360. / number_of_sides)
self._outline_trace(number_of_iterations - 1, length, number_of_sides)
self.canvas.right(360. / number_of_sides)
self._outline_trace(number_of_iterations - 1, length, number_of_sides)
def regular_polygon(self, number_of_sides, length):
"""Draw a regular polygon
:param number_of_sides: Number of sides of the polygon
:param length: Length of a side
:type number_of_sides: int
:type length: int
:returns: Nothing
:rtype: None"""
angle = 360. / number_of_sides
for i in range(number_of_sides):
self.canvas.forward(length)
self.canvas.right(angle)
def poly_repeat(self, length, number_of_side, density):
"""Draw a repetition of a regular polygon
:param length: Length of a side
:param number_of_side: Regular polygon's side number
:param density: quantity of polygon
:type length: int
:type number_of_side: int
:type density: int
:returns: Nothing
:rtype: None"""
angle = 360. / density
for i in range(density):
self.regular_polygon(number_of_side, length)
self.canvas.right(angle)
def outline(self, number_of_iteration, length, number_of_sides):
"""Draw outline of a recursive shape
:param number_of_iteration: Number of iteration used to draw
:param length: Length of a single side
:param number_of_sides: Number of sides of the initial shape
:type number_of_iteration: int
:type length: int
:type number_of_sides: int
:returns: Nothing
:rtype: None"""
for i in range(number_of_sides):
self._outline_trace(number_of_iteration, length, number_of_sides)
self.canvas.right(360. / number_of_sides)
def tree(self, length, angles, factor=1.5, min_size=5):
"""Draw a tree recursively
:param length: Length of the root of the tree
:param angles: List of angles for branch
:param factor: Reduce factor for next branch
:param min_size: Minimal length of a branch
:type length: int
:type angles: list
:type factor: float
:type min_size: float
:returns: Nothing
:rtype: None"""
if length < min_size:
return ""
else:
self.canvas._state["color"] = (int(length), int(length), int(length))
for angle in angles:
pos = self.canvas.get_position()
base_angle = self.canvas.get_angle()
self.canvas.right(angle)
self.canvas.forward(length)
self._tree(length / factor, angles, factor=factor, min_size=min_size)
self.canvas.set_position(pos)
self.canvas.set_angle(base_angle)
def dragon(self, length, number_of_iteration, angle=1):
"""Draw the dragon curve
:param angle: Start angle
:param length: Length of a side
:param number_of_iteration: Number of iteration for the curve
:type length: int
:type number_of_iteration: int
:returns: Nothing
:rtype: None"""
if number_of_iteration == 0:
self.canvas.forward(length)
else:
self.dragon(length, number_of_iteration - 1, 1)
self.canvas.left(angle * 90)
self.dragon(length, number_of_iteration - 1, -1)
def power(self, length, power, base=1.5):
k = base
list_powers = []
for i in range(power):
k = 10 * (k * 0.15 - int(k * 0.15))
n = int((k - int(k)) * 10)
list_powers.append(n)
for i in list_powers:
angle = 36 * i
self.canvas.right(angle)
self.canvas.forward(length)
def turning_tree(self, length, angles):
while True:
self.tree(length, angles)
time.sleep(0.1)
i = 0
for _ in angles:
angles[i] += 1
i += 1
def _koch_curve(self, length):
self.canvas.forward(length)
self.canvas.left(60)
self.canvas.forward(length)
self.canvas.right(120)
self.canvas.forward(length)
self.canvas.left(60)
self.canvas.forward(length)
def koch_curve(self, length, number_of_iteration):
if number_of_iteration > 0:
self.koch_curve(length / 3., number_of_iteration - 1)
self.canvas.left(60)
self.koch_curve(length / 3., number_of_iteration - 1)
self.canvas.right(120)
self.koch_curve(length / 3., number_of_iteration - 1)
self.canvas.left(60)
self.koch_curve(length / 3., number_of_iteration - 1)
else:
self._koch_curve(length)
class Turtle:
@staticmethod
def _calc_center(size):
return size[0] / 2, size[1] / 2
def _forward(self, distance):
AB = (distance * math.cos(math.radians(self._state.get("angle")))) + self._state.get("coordinate_x")
AC = (distance * math.sin(math.radians(self._state.get("angle")))) + self._state.get("coordinate_y")
self._forward_image(distance)
self._set_coordinates((AB, AC))
def _forward_image(self, distance):
AB = (distance * math.cos(math.radians(self._state.get("angle")))) + self._state.get("coordinate_x")
AC = (distance * math.sin(math.radians(self._state.get("angle")))) + self._state.get("coordinate_y")
self.draw.line((self.get_position('x') * self.resolution, self.get_position('y') * self.resolution,
AB * self.resolution, AC * self.resolution), fill=self._state.get("colour"))
def _turn(self, angle):
self._set_angle(self._state.get("angle") + angle)
def _set_angle(self, angle):
self._state["angle"] = angle
while self._state.get("angle") >= 360:
self._state["angle"] = self._state.get("angle") - 360
def _clear(self):
pass
### Fonction publiques ###
def _clear_img(self):
self.image = Image.new(
'1', (self._config.get("size")), (255, 255, 255))
self.draw = ImageDraw.Draw(self.image)
def __init__(self, titre="Turtle", size=(
400, 400), resolution=10):
self._config = {"titre": titre,
"size": size,
"size_IMG": (size[0] * resolution, size[1] * resolution),
"center": self._calc_center(size),
}
self._state = {"angle": 0,
"coordinate_x": self._config.get("center")[0],
"coordinate_y": self._config.get("center")[1],
"colour": (0, 0, 0),
}
self.fractal = Figures(self)
self.image = Image.new(
'RGB',
(self._config.get("size_IMG")),
(255,
255,
255))
self.draw = ImageDraw.Draw(self.image)
self.resolution = resolution
def forward(self, distance):
self._forward(distance)
def backward(self, distance):
self._forward(-distance)
if self.sauvegarde:
self._forward_image(-distance)
def right(self, angle):
self._turn(angle)
def left(self, angle):
self._turn(-angle)
def goto(self, coordinates):
self._set_coordinates(coordinates)
self.draw.line(coordinates)
def _set_coordinates(self, coordinates):
self._state["coordinate_x"] = coordinates[0]
self._state["coordinate_y"] = coordinates[1]
def clear(self):
self._clear()
# ## Accès aux variables ##
def set_position(self, coordinates):
self._set_coordinates(coordinates)
def get_position(self, type_coord=''):
if type_coord == 'x':
return self._state.get("coordinate_x")
elif type_coord == "y":
return self._state.get("coordinate_y")
return self._state.get("coordinate_x"), self._state.get("coordinate_y")
def set_angle(self, angle):
self._set_angle(angle)
def get_angle(self):
return self._state.get("angle")
def get_state(self):
text = ""
for i in self._state.items():
text = text + "\n" + str(i[0]) + ":" + str(i[1])
return text
def save(self, path, type_img=None):
self.image.save(path, type_img)
if __name__ == "__main__":
t = Turtle()
t.set_position((0, 0))
t.fractal.outline(6, 2, 5)
t.save("test.bmp")

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.0 KiB

View File

@ -1,5 +0,0 @@
from PIL import Image
# Display the generated fractal
img = Image.open("fractal.png")
img.show()

View File

@ -1,12 +0,0 @@
[[source]]
url = "https://pypi.org/simple"
verify_ssl = true
name = "pypi"
[packages]
pillow = "*"
[dev-packages]
[requires]
python_version = "3.6"

BIN
test.bmp Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 MiB